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ABSTRACT.

We define a class of multivariate exponential distributions as the

distributions of occupancy times in upwards skip-free Markov processes in

contirmous time. These distributions are infinitely divisible, and the multivariate

gamma class defmed by convolutions and fractions is a substantial generalization of

the class defined by Johnson & Kotz (1972). Parallel classes of multivariate

geometric and multivariate negative binomial distributions are constructed from

occupancy times in 'instant' upwards skip-free Markov chains. Maximum

likelihood estimation and times series applications are discussed.

Key words: multivariate exponential, rnuldvariate geometric, skip-free Markov chain.
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1. INTRODUCTION.

The exponential distaibution plays a central role in several fields of probability

and statistics, and ranks in overall importance next to the normal distribution. While for the

normal case we have a well established multivariate normal distribution, in the exponential

case the situation is far from clear-cut. A variety of bivariate exponential distributions
(BVE) have been defined in the past, some of them extendable to higher dimensions and to

gamma distribulions.

The univariate exponential distribution has a number of important
characterizations. Multivariate extensions of some of these characterizations were usti for

construction of multivariate exponential distri', utions (MVE) by Marshall & Olkin (1967)

(lack of memory property) and Paulson (1973) (a stochastic difference equation). Standard

transformation techniques were exploited by Kibble (1941) using a x2-type derivation, and

Moran (1969) using the distribution-fonction transformation and then the '-log'

transformation to obtain a MVE from the multivariate normal via a multivariate uniform

distribution. Gurnbel (1960) explored possibilities of defining BVE and MVE classes

based on the form of the joint distribution and density functions. Arnold (1975) constructed

nested classes of BVE's by repeated application of geometric compounding. His

constructions are equally applicable to multivariate geometric distributions (MVG). Wang Zi

Kun (1980) derived the distributions of occupancy times (sojourn times) in birth-death
processes; these distributions are MVE. This brief review of related research is not
exhaustive; our research was motivated by these references. We extend the results of Wang

Zi Kun to all upwards skip-free Markov processes on {0, 1, 2, ... ), and define a parallel

MVG class.
In Section 2 we give the definition of occupancy times and related notation, and

construct a new class of MVE distributions. We will work mainly with moment generating

functions (mgf), and we derive for them recursive formulae which involve the matrix of

transition intensities of the underlying Markov process. Owing to infinite divisibility we

have also a class of multivariate gamma distributions (MVI").

In Section 3 we construct a new class of MVG distributions from occupancy

times in 'instant' Markov chains. The constructions in Sections 2 and 3 are completely

analogous, and there is a one-to-one correspondence between our MVE and MVG
classes, which is also a one-to-one correspondence between the underlying stochastic
processes. This one-to-one correspondence is an extension of the well-known relationship

between the mgf's of univariate exponentials and probability generating functions (pgf)

of geometric distributions:



2

9e(s) = Pp(s+1) for 8 = p-1-1,

where 98 is the mgf of the exponential with parameter 8 , 8/(8-s) , and Pp is the

pgf of the geometric distribution with parameter p, (1-p)/(1-pz).

In Section 4 we discuss maximum likelihood estimation with our MVE class

and indicate some time series applications. We propose estimation methods based on the

mgf because it has a much more tractable form than the density function. Our comments in

the Section are equally applicable to the MN% class, althoug.i there the scope of
applications is probably limited.

In Section 5 we discuss an alternative drrnition of an MVE class based on the

generalization of the x22 distribution, and state a conjecture that the occupancy times and

this generalization define the same class of MVE. The support for this conjecture is the

equivalence between a irk of subclasses of these distributions, proved by Kent (1982).

2. OCCUPANCY TIMES.

Let (Zt)t,o be an upwards skip-free Markov process on the state space of the

non-negative integers {0, 1, 2, ... ) in continuous time given by the matrix of
transition intensities

( -vo o

p. 1 -v 1

42,0 P'2 -v2

43,0 3,1 1-13 -v3 X3

(2.1)

wher ?ti > 0 0 (i1), 0 (i?..j+22), and all the row-totals of Q

are equal to zero. We denote by Qn the nxn upper left-hand corner submatrix of Q,

corresponding to the states 0, 1, ..., n-1. Let Sn = diag (so, si, . . sn_i ) be the

diagonal matrix with real numbers si on the diagonal; they will be subsequently used as the
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arguments of a joint mgf

(p(s.) = f f exp ( 'sn) f(x)dx , (2.2)

where sn = (so, sl, . . sn_1). The index n will be omitted whenever its value is obvious

from the context.

The first hitting time from a state k to a state n k is formally defined as

ticn = min (t; Zt = n I = k) , (2.3)

and the vector of occupancy times during passage from k to n k (denoted by Tk,n) is

the decomposition of the first hitting time tk,n into the sum of the times that the Markov

process Z has spent in each of the states 0, 1, ..., n-1:

where

Tk,n (tk,n(0), tk,n(1), *, tk,n(r1-1) )

tk,n(11) = f tZt=h1 Zo=k) dt

(I( A) is the indicator function for the event A, and the integral is over the interval

[0' tk,nl ).

The joint mgf 9k,n(s) for the vector of occupancy times during the passage

from k to n.?_k can be derived using a backwards equations argument; the derivations

below are similar to those for the first hitting times (fht) given by Rosenlund (1977).
Firstly, owing to the strong Markov property of the process Z we have

Tk,n Tk.k+1 Tn-1,n (2.4)

with mutually independent sumrnands, and trivially Tk,k = (0, 0, ..., 0). Correspondingly

for the mgfes we have



9k,n(s) = 9k,k+1(s) ck+l,k2(s) (P(s) (2.5)

and 9k,k(s) 1 . The backwards equations for the 'one-step' mgf (Pk+(s)

can be expressed in the form

(Pk+(s) = (vk skY1 [Xk Pk-1,k+1(s) 9k-2,k1(s) +

+ 90,k4-1(s) b (2.6)

where 90+(s) = vo/(vo-so), and .;1,0 = 0. The equation (2.6) can be reexpressed as

(Pk+(s) = Xic/(vk sk) [1 PicAvk sk) (Pk-1+(s)

sk) (pk_2,k(s) . k,c/(vk sk)90,k(s) ]-1,

(2.7)

4

which implies that the occupancy times vector Tk+ = Tk,k+1 is a convolution of a

univariate exponential distribution and a geometric compound distribution. Hence

Tk+ (9k+) is infinitely divisible, and owing to (2.5) so are all the occupancy times.

It is easy to show by induction, using (2.5) and (2.7), that cpk+(s) is a ratio of

polynomials

where

yk+(s) = Xk Rk(s) / Rk+l(s), (2.8)

Ro(s) 5--- 1,

R1(s) = vo so



R2(s) = (vo s0)(v1 s1)

and generally,

Rk+1(s) = (vk sk)Rk(s) k Xk_l Rk_l(s) Xk-1 Xk_2 Rk_2(S)

k,1 Xk-1 X2 X1 R1(s) 4k,0 Xk-1 X1 X0 ,

(2.9)

which is exactly the expansion for det (Qic1-Sk4-1)

Hence

5

with respect to the bottom row.

Re(s) = det (Qn - Sn) (2.10)

for n As a by-product we have the identity det(-Qn) = A,0

The vectors of occupancy times during passage from 0 to n define our class of

n-variate exponential distributions. Their mgf's have the form

(1)0,n(s) = xo x1 xn-1/Rn(s) (2.11)

where the polynomials Rn , linear in the variables so, sl, . . sn_i , are generated

recursively by (2.9).

The versions of the identities (2.8) and (2.9) for the birth- death process (all

equal to 0) were obtained by Wang Zi Kun (1980).

The bivariate exponential distribution generated by occupancy times during
passage from 0 to 2 has the mgf

xo ?1/4-1 R2(s) = xo Rvo s001 st) X01-1-1] ,

and the joint density

ko Xi exp (-v0x0 - v1x1) Lo(Xo p.h >co x1) (2.12)



where

L0(x) = xk / (1(02
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The distribution (2.12) has been previously defined by Downton (1970), and in a more

general context by Kibble (1941).

We define for h > 0

Lh(x) = Ek Xk / k! r(k+h+1) , (2.13)

which is an analytic version of the Besel function of order h. The bivariate gamma

distribution (BVT) with scale a > 0 corresponding to (2.11) has the density

(X0 X1)(5 (X0;(1)(3-1 exp (-v0x0 v1x1) La(X01.1.1x0x1) . (2.14)

The BVE distribution (2.11) has the mean ((1 + p.1/X1)/X0, 1a1) and correlation

e [0,1) . No correlation corresponds to independence. The conditional exponential

distributions defined from (2.11) by conditioning on x0 or x1 have linear regressions:

and

E(X0 I X1= x1) = X0-1(1 +1,11x1)

E(X1I X0= x0) = v1-1(1 + X0p.1x1/v1) .

The occupancy times during passage from 0 to n>2 in birth-death processes form a
conditionally independent sequence and their joint density can be partitioned into a product

of conditional exponential densities, see Johnson & Kotz (1972) or Longford (1982). Such

a sequence can be used to model an AR(1) times series, although the innovation
distribution is difficult to describe.

The general trivariate exponential density has the form

?coXi exp (-v0x0-/1.1-v2x2)

`1



Lk(X.d.J.,1---)Lkoclp.2.1.2)(xox12,0x0.1x2)kim..
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(2.15)

The proof is given in the Appendix. Clearly this and densities for higher dimensions are not

suitable for direct maximum likelihood estimation. An alternative approach to MLE is

discussed in Section 4.

All bivariate marginals of the divariate exponential (2.13) belong to the BVE

class. The correlation madix for the trivariate exponendal is

1

1

1 v1X2 k1A/2 1

and the means are 1/(X0X 1 2 . v 2, iy 2, ) , where t = 1v2 - X.ip.2)

3. MULTIVARIATE GEOMETRIC CLASS.

The constructions of the MVE class from occupancy times in Markov processes

have their obvious analogues for discrete distributions in occupancy times in Markov

chains. For example, the birth-death process has its analogue in the Markov chain which

allows jumps only one step 111) or down (discrete random walk, skip-free in both
directions). However, the distributions of the occupancy times in such Markov chains have

a more complex structure than their birth-death analogues. Rather than give an example we

return to this point in the conclusion of this Section.

Let

(

A

a() up 0
d1 al u1 0

r2,0 62 a2 u 2 0

r3,0 r3, 1 d3 a 3 u3 0
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be a matrix of transition probabilities of an upwards skip-free Mw_kov chain (all entries

non-negative, ui > 0 for all i, row totals equal to 1). In analogy with Section 2 we denote by An

the nxn upper left-hand corner submatrix of A, and define the first hitting times and occupancy

times vectors.

The occupancy time in a state k during passage from 0 to n (0 k 5_ n) is a

compound disqibution of the individual waiting times in the state which are geometric starting at 1.

To obtain a geometric distribution we could either subtract the constant 1 from the occupancy time,

or subtract 1 from every waiting time. We choose the latter option, and refer to the underlying

Markov process as the 'instant' Markov chain. In this Markov chain waiting times can be equal

to zero with positive probability, and so a sequence of states can be visited within the same

time-instant. Our main motivation for this definition of a Markov process is to construct a class of

multivar'.iate geometric distributions (MVG) with analogous structure to the MVE class defined

in Section 2.

For the first hitting times and the occupancy times in instant Markov chains given by the

probability transition matrix A we use the notation identical to that introduced in Section 2. T-k,n

or Tic+, and Tk,n or Tk+, respectively. The vector z = (zo, z1, z2, . . . ) will be used as the

argument in the probability generating functions (pgf) Picn for the occupancy times vectors:

Pk ji(z) = E (zTkal) .

The formula (2.5) has a direct analogue in

Pk,n(z) = Pk+(z) Pk+1+(z)

where Ph+(z) = Ph,n+1(z), and the backwards equations yield

Pk+(z)

(1 ak zk)-1 [uk dk Pk-1,k+1(z) rk,k-2 Pk-2,k+1(z) rk,0 PO,k+1(z)}

with the solution in a recursive form

Pk+(z)

(3.1)

(3.2)
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uk/(1 - akzk) [1 - dk/(1 - akzk) Pk-1+(z) rk,k-2/(l akzk) Pk-2,k(z)

. . . + rk,o/(1 - akzk) Pokz)]-1, (3.3)

P0+(z) = (1 a0)/(1 aozo)

The formula (3.3) is a convolution of a univariate geometric and a geometric compound

distribution. This, together with (3.1), implies infmite divisibility of all occupancy times

distributions. We declare the class of all distributions generated by occupancy times during passage

from 0 to n as our MVG class. This definition can be extended to the class of multivariate

negative binomial distributions (MVNb) in the obvious way.

The identities (3.2) and (3.3), compared with (2.6) and (2.7) indicate a one-to-one

correspondence between occupancy times in continuous and discrete processes. Moreover, we

have a cne-to-one correspondence between the underlying processes:

If uk = Xk/vk (1(.0)

dk = (1c.._ 1)

rk,h = (k h+2 ?_ 2)

then

(pk,n(s) = Pk,n(s+1) , (3.4)

where 1 = (1, 1, ). This one-to-one correspondence between the MVE and MVG classes is

the natural extension of the one-to-one correspondence for the univariate exponential and geometric

distributions.

In complete analogy with the continuous case we obtain the identity

PO,n(z) = un-1 T(z)

where Tn are polynomials linear in zo, z1, generated by the recursive formula

Tni-1(z) = (1 - anzn)Tn(z) - dnun_ITn_1(z) - rn,n..2un.2un..1Tn..2(z)

rn,0 uoul un-1

with To(z) = 1 and T1(z) = 1 aozo . It is easy to show by induction that

(3.5)

(3.6)
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T(z) = det (In - An(z)) , (3.7)

where A(z) is formed from the matrix An by replacing its diagonal elements ak by akzk

(0.5_k<n), and is In the nxn unit matrix.

For the bivariate and trivariate geometric distributions the joint probabilities and moments

(correlations) can be obtained by standard methods, in complete analogy with the exponential case.

For higher dimensions the formulae are not tractable.

The backwards equations for the occupancy times in classical Markov chains also define

a class of MVG disibutions (and are infinitely divisible), but the one-to-one correspondence with

our MVE has a substantially more complex and less natural form. Even the distributions of the

first hitting times in Markov chains have a substantially more complex structure than the flit's in

continuous time; for details see Kent & Longford (1983).

4. MAXIMUM LIKELIHOOD ESTIMATION

AND TIME SERIES APPLICATIONS.

Maximum likelihood estimation for the BVE and Bvr given by the densities (2.12)

and (2.14), respectively, can be efficiently carried out by application of standard numerical

methods using some well-known recursive formulae for computation of Bessel functions and ratios

of Bessel functions.

Since dLk(x) / dx = Lk+ 1(x), the derivatives of the log-likelihood involving the

bivariate densities of the form (2.14) involve ratios of Bessel functions, Lk+l (x)/Lk(x). Efficient

recursive algorithms for calculation of such ratios were derived by Amos (1974); other useful

identities are given in Abramowicz & Stegun (1972). The natural parameter space for the BYE is

not an open space because of the boundary 1.11 = 0. It is easy to show that the maximum likelihood

estimate of is positive if and only if the sample covariance N-1 Ei xoixii - RoTi is positive,

see Longford (1982) where other numerical details are discussed.

The MVE class generated as the occupancy times ve;;tors from birth-death processes

have conditionally independent components, and they can be used for modelling of exponential

AR(1) time series. Since the likelihood for such a time series factors into univariate conditional

exponential densities, direct maximum likelihood is feasible.

The form of the density of the general trivariate exponential distribution renders standard

maximum likelihood methods impossible, even though the corresponding mgfs have a very

I ti
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simple structure. Feuerverger and McDonough (1981) have developed procedures for maximum

likelihood estimation based on the empirical mgf and proved that these procedures can be

'fine-tuned' to arbitrarily high relative efficiency, given some information about the estimated

parameters. Their methods appear to be tailor-made for our classes of multivariate distributions

(MVE, MVF, MVG, and MVNb) because they offer a unified approach to estimation in all

these classes with generating functions of similar functional form. The main practical point in

application of the methods of Feuerverger & McDonough is in determining the number and location

of the points in which the mgf/pgf would be approximated. These issues could be explored in

the special case of BVE where direct maximum likelihood estimation is available. It is not clear

though to what extent these results could be generalized to MVE. Of course, the moment method

of estimation is another tractable option, owing to the simple form of the mgf/pgf.

The MVE class of n-variate distributions (n>2) has the subclass of n independent

univariate exponentials and the larger subclass of the distributions with conditionally independent

components (AR(1), generated from birth-death processes). It appears natural to define a whole

set of nested classes of MVE distributions by allowing the generating Markov process to have the

first 2, 3, ..., n-1 non-zero subdiagonals in the transition intensities matrix Q. If Q has only the

first subdiagonal non-zero, we have an AR(1) time series. We conjecture that if the first k

subdiagonals are non-zero then the resulting MVE has an AR(k) structure, i.e., it forms a

k-step conditionally independent sequence: Zh and Zk+h+1 are conditionally independent, given

44-1, 4+2, Zk+h. Definition of these subclasses of MVE imposes a structure upon the

entire MVE class that could be used for description of the complexity of the correlation structure

of an exponential time series or a multivariate sample from MVE.

5. MVE AS A GENERALIZED CM-SQUARE DISTRIBUTION.

Let X1 = -11(X , X12, .., Xin) and X2 = (X21, X22, , X2n) be a pair of

independent and identically distributed normal random vectors with mean 0 and variance matrix

Q. Then the random vector Y = (Y1, Y2, ..., Yn) given by Yk = X 1k2 X2k2 defines an

n-variate exponential distribution. The original idea for this definition is due to Kibble (1941). We

will refer to this derivation as the generalized x22. It is easy to show that the mgf for Y is

dot (1/2 Q-1) / det (1/2 Q-1 - Se) ,

which closely resembles the functional form of our MVE, see (2.11) and (2.10). Kent (1982)

has in fact proved that the subclass of our MVE class arising from birth-death processes coincides

'
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with the subclass of the generalized x22 distributions derived from variance matrices C2 for which

f2-1 is tridiagonal.

An obvious extension of this identity is the following conjecture: The distributions of the

MVE with AR(k) smicture (as defmed in Section 4) coincide with the generalized x22

distributions derived from variance matrices f2 such that al have k non-zero rows below and

above.the main diagonal. The proof of Kent (1982) cannot be extended for this general

proposition, and we do not have an alternative method of proof.
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APPENDIX

The density of trivariate exponential distribution

The mgf of the trivariate exponential distribution is

(10 s0)(11 s1)(12 s2) X0P1(12 s2 X1112(10 50) 2,0X0X1

xox1x2 1 AlP2 2,0X0A1
r(To - so)(71 - sl)(T2 - s2)

k=0 (11
51)- -1, 0-so 12-52 kjo-s0)02-s2)

(1(14-k2k3)! 1 1

X°X1X2 k210 k310 k1Ik21k3! (1.1-S1)kl+k2+k31-1 (70-SOkl+k3+1

1

(12-s2)k2+k3+1
(X0111)kl(X1112)k2(2,0X0X1)k3

The summands above are independent Gammas, and the corresponding density is

1X0k1X2 exp (-70x0-11x1-1'2x2) xIE
k1!k2!k3!(k1i-k3)!(k24.k3)!

kl k2 k3

(X01.L1x0x1)kl (X1p2x1x2)k2 (X0X12,0x0x1x2)k3

(X0X12,0x0x1x2)k T

= X0X1X2 exP (-10x0-/lx1-12x2) X k!
1.4cApplx0x1)Lk(X1112x1x2)

k=0

Note that if 2,0 = 0 (conditional independence), this density collaspes to

X0X1X2 exp (-10x0-71x1-72x2) 1,0(X0111x0x1) 1.0(X1112x1x2)

20


